

AGENDA

REGULAR MEETING OF THE WATER PLANNING COMMITTEE October 17, 2022 3:30 PM Conference Room A

Call to Order

Public Comments

Members of the public may make comments in-person, virtually, or submit a Public Comment Request Form located at <u>https://www.evmwd.com/evmwd-publiccomment</u>, no less than one hour prior to the posted start time of the meeting. Comments shall be made in an orderly manner and profanity, slanderous, or abusive language will not be tolerated. Please note, individuals have a limit of three (3) minutes to make comments and will have the opportunity when called upon.

Discussion Items:

- 1. Temescal Valley Pipeline Expansion Feasibility Study Project Update
- 2. Water Resources At A Glance
- 3. Key Water Quality Parameters
- 4. Other
- 5. Consider Items for Board Review
- 6. Adjourn

In the interest of public health and safety, this meeting will be conducted in accordance with provisions of the Brown Act and Assembly Bill 361. Participants who would like to join this meeting remotely can do so in one of the following ways:

For Online Participation: Go to: <u>www.zoom.us</u> Select Join a Meeting Enter Meeting ID: 851 8566 0999 Meeting Password: 92530 For Call-in Only: Call: (720) 707 2699 Enter Meeting ID: 851 8566 0999 Meeting Password: 92530

31315 Chaney Street Lake Elsinore, CA 92530 Posted 10/13/22 8:51 AM

WATER PLANNING COMMITTEE

DISCUSSION OUTLINE

Date: October 17, 2022

Originator: Parag Kalaria- Water Resources

Subject: UPDATE ON THE PREPARATION OF THE FEASIBILITY STUDY FOR TEMESCAL VALLEY PIPELINE EXPANSION

STRATEGIC GOAL

Optimize and Diversify Water Sourcing

BACKGROUND AND RECOMMENDATION

Elsinore Valley Municipal Water District (EVMWD) operates the Temescal Valley Pipeline (TVP), which delivers water from Western Municipal Water District's (Western) Mills Gravity Pipeline (MGL) termination point at the Woodcrest Vault to EVMWD's water distribution system. The turnout was planned, designed, and constructed for a capacity of 25.9 million gallons per day (MGD) at the Woodcrest Vault turnout. The TVP can convey up to approximately 13 (MGD) of water by gravity from Western's turnout to EVMWD's service area.

EVMWD is currently projecting an estimated 13 MGD shortfall which will require an expansion of system capacity to meet peak water demands over the next 25 years. A large portion of this future demand will occur in the northwest portion of the EVMWD system in the Alberhill area. For this reason, given its location in the northern portion of EVMWD system, increasing the TVP capacity has been considered as the best option to increase system capacity.

In 2014, EVMWD completed the TVP Feasibility Study, which investigated six multiple expansion alternatives to increase TVP capacity: full parallel pipe, partial parallel pipe, partial replacement pipe, partial parallel pipe installed in phases, pump station, and pump station and partial parallel pipe. Based on the hydraulic analysis and anticipated future demand, both the 2014 TVP Feasibility Study and the 2016 Water System Master Plan (WSMP) recommended increasing the TVP capacity by 12.9 MGD to meet future water demands.

On February 25, 2022, the Board of Directors approved a Professional Services Agreement with GHD Inc. to prepare the Feasibility Study for TVP Expansion. This feasibility study evaluated recommended alternatives from the 2014 TVP Feasibility Study by considering a comprehensive benefits cost analysis approach. The feasibility study analyzed various alternatives to increase TVP capacity by 12.9 MGD, bringing its total capacity to 25.9 MGD. This considered a detailed review of uncertainties and components potentially impacting the cost and constructability of the project including geotechnical, traffic, utility separation, access to easements, environmental constraints/compliance, etc.

During the meeting, Staff will provide an update on the preparation of the Feasibility Study for TVP Expansion.

ENVIRONMENTAL WORK STATUS

This item does not constitute a project under CEQA.

FISCAL IMPACT

None.

Attachments:

PowerPoint Presentation

Temescal Valley Pipeline Expansion Feasibility Study – Project Update

WPC 1 October 17, 2022

- Capacity and Demand Projection
- 2017 AVP, TVP, and Canyon Lake Feasibility Study
- Overview of TVP Expansion Feasibility Study
- Next Steps

Projected Water Demand Growth

EVMWD System Capacity 80.0 IPR = Max 6 mgd 70.0 Temecula Well = 0.7 mgd Palomar Well Replacement = 0.4 mgd 60.0 VP Expansion = 12.9 mg 50.0 Maximum Daily Demand (MDD) TVP = 13.0 mgd 40.0 30.0 AVP = 24.2 mgd 20.0 CLWTP = 5.0 mgd Coldwater Wells = 0.6 mgd 10.0 Existing Wells = 11 mgd 0.0 Existing Elsinore Basin Wells Coldwater Wells Canyon Lake WTP Natural Runoff Skinner WTP via AVP TVP Palomar Well Replacement TVP Expansion Temecula Well IPR MDD (mgd)

Water Quantity mgd)

- Water demand expected to increase by 70% in the next 23 years
- 13+ MGD shortfall
- Develop new sources of supply and increase system capacity to satisfy future water demands

2017 TVP, AVP, and Canyon Lake System Capacity Study - Alternatives

Evaluated Alternatives:

- Alternative No. 1: Increasing the TVP operational capacity
- Alternative No. 2: Additional capacity from Metropolitan through the Auld Valley Pipeline (AVP)
- Alternative No. 3a and 3b: Designing and building a 13.8 MGD upgrade to the Canyon Lake WTP.

Previous TVP, AVP, and Canyon Lake System Capacity Study – Results

Alternative No. 1 to expand
the TVP was the preferred
recommended alternative
It was recommended to
perform detail study to
evaluate TVP alignment and

options

TVP Expansion Feasibility – Consultant Selection

- RFP Released on September 8, 2020
- 4 Proposals received on October 8, 2020:
 - GHD Inc
 - Kennedy/Jenks Consultants, Inc.
 - CDM Smith
 - Stantec Consulting Services
- Staff selected GHD as the most qualified Consultant
- Board of Directors approved Professional Services Agreement with GHD on February 25, 2021

TVP Expansion Feasibility – Background and Purpose

Existing Temescal Valley Pipeline

\\ghdnet\ghd\US\\rvine\Projects\561\11225086\GIS\Maps\Deliverables\11225086_Temescal_TVP_Alternatives_Analysis.aprx - 11225086_TVP_Map Print date: 28 Sep 2021 - 10:07

Data source: USA NAIP Imagery: Natural Color: Esri, USDA Farm Service Agency Created by:kbarreroveliz

TVP Expansion Feasibility – Alternatives

Seven (7) alternatives considered

- 1. Full parallel pipe
- 2. Full replacement pipe
- 3. Partial parallel pipe
- 4. Partial replacement pipe
- 5. Pump station
- 6. Pump station and partial parallel pipe
- 7. Pump station and partial replacement pipe

For this analysis, all parallel pipe alternatives (1, 3 and 6) using the original TVP alignment and Alternative New TVP 2 only.

TVP Expansion Feasibility – Evaluation Criteria

- Each of the 7 alternatives were evaluated on 8 criteria
- Staff provided significant feedback during criteria definition and alternative selection

Evaluation Criteria	Weighting Factors	Basis
Total TVP Capacity	19%	Minimum delivery of 41 cfs to the Lake Street Tank at 100% MGL demand and a minimum pressure of 10 psi
Constructability	9%	Amount rock excavation, grade of slope, ease of construction, traffic interruption, road crossings and duration of construction
Cost	18%	Equivalent Annual Cost (EAC) based on lifetime costs including capital costs, annual operations and maintenance costs and replacement costs
Disruption to Water Supply	6%	Disruption to District water supply during construction
Environmental Impacts	15%	Review of sensitive vegetation, sensitive plant and animal species, jurisdictional resources, conserved lands and critical habitat, cultural resources, community issues (i.e. noise), and environmental compliance
Pipeline Corridor Availability	9%	Potentially moving utilities and/or acquiring new easements
System Operational Complexity	9%	Requirement for experienced personnel for operations and maintenance activities
Reliability & Redundancy	15%	Reliability and Redundancy during an unplanned event

TVP Expansion Feasibility – Results

- Preferred Alternative: Alternative 5 - Pump Station
- Alternative 5 highlights:
 - ✓ Lowest cost alternative
 ✓ Est. \$18M (2021)
 - ✓ Least disruption to water supply
 - Better environmental impact score
 - ✓ Higher operational complexity
 - ✓ Limited redundancy

			Heavily Weighted Evaluation Criteria							
Alternative	Study Score	A - Total TVP Capacity	B - Construct- ability	C - Cost	D - Disruption to Water Supply	E – Environ- mental Impacts	F - Pipeline Corridor Availability	G - System Operational Complexity	H - System Reliability & Redundancy	Average Score
1 - Full Parallel Pipe	812	857	774	783	857	810	814	857	817	820
2 - Full Replacement Pipe	566	662	540	482	520	608	662	662	482	576
3 - Partial Parallel Pipe	811	852	764	803	852	798	808	852	792	815
4 - Partial Replacement Pipe	605	684	555	553	551	625	684	684	504	605
5 - Pump Station	846	873	853	873	873	839	833	813	773	842
6 - Pump Station and Partial Parallel Pipe	816	858	798	823	858	808	815	848	775	822
7 - Pump Station and Partial Replacement Pipe	657	726	640	623	606	670	722	720	554	658

TVP Expansion Feasibility – Alternative 5 Details

14

Summary

- Locate on District property, shared with future Lee Lake Wells site
- No pipe line component
- 3 duty + 1 standby pumps 300 HP each
- Increases TVP capacity to 41 cfs
- Dedicated 36" pump station bypass piping

TVP Expansion Feasibility – Site Plan

SHEET KEYNOTES

- METERING SWITCHBOARD.
- TRANSFORMER ON 6' X 10' PAD WITH SLAB BOX AND GROUNDING PER SCE REQUIREMENTS.
- 3. SURGE TANK.
- 12' WIDE ROLLING GATE WITH CARD READER OPERATOR PER EVMWD STANDARD DRAWING SD-2.
- 5. 8' HIGH SPLIT FACE CMU BLOCK WALL, COLOR TAN.
- 6. PUMP STATION, SEE FIGURE 4.3.
- 4' WIDE SINGLE GATE PER EVMWD STANDARD DRAWING SD-1.
- 8. 36" DI PIPE.
- 9. 36" 22.5° ELBOW.
- 10. PLUG AND ABANDON EXISTING WATER MAIN.
- 11. CONCRETE PAVEMENT.
- 12. ANTENNA TOWER.
- 13. AC DRIVEWAY.
- 14. 36" BUTTERFLY VALVE SIM TO EVMWD STANDARD DETAIL W-13.
- 15. 36" CHECK VALVE, RESTRAINED EACH SIDE IN PRECAST 10'X6' VAULT.
- 16. MANUAL TRANSFER SWITCH WITH RECEPTACLE FOR PORTABLE GENERATOR.

2

Update preliminary design report following workshop. Generate preliminary cost estimate.

3

Deliver preliminary design package.

.3

QUESTIONS?

WATER PLANNING COMMITTEE

DISCUSSION OUTLINE

Date: October 17, 2022

Originator: Parag Kalaria- Water Resources

Subject: WATER RESOURCES AT A GLANCE

STRATEGIC GOAL

Optimize and Diversify Water Sourcing

BACKGROUND AND RECOMMENDATION

Staff will provide an update on EVMWD's Water Resources At A Glance Report during the meeting.

ENVIRONMENTAL WORK STATUS

Not applicable.

FISCAL IMPACT

None.

Attachments:

Water Resources At A Glance Report

Water Resources at Glance October 17, 2022

WPC ¹ October 17, 2022

Lake Levels

20

Imported Water Reliability As of Sep 26, 2022

St	ate Snow/ Precipitation Survey	
Mon	Statewide Average water equivalent ⁽¹⁾	0.1"
	Statewide Percent of April 1 ⁽¹⁾	0%
S	Statewide Percent of Normal ⁽¹⁾	0%
recip.	No. Sierra Region (Sacramento River) ⁽¹⁾	42.0''
	Percent of Average ⁽¹⁾	79%
	South Coast Region % of Av. ⁽²⁾	73%
Δ	Elsinore Precip. ⁽¹⁾	7.07''
	Percent of Average ⁽¹⁾	60%
_	2022 Initial State Allocation to	Γ0/
×	Metropolitan WDSC (95,575 AF)	5%
tes	(1) Oct 2021. to 9/26/2022	
No	(2) Oct. 2021 to end Aug. 2022	

Imported Water Reliability As of Sep 26, 2022

Water Production and Drought Stage

Monthly Water Consumption Comparison

Asset Transfer Agreement - MGL

Capacity Utilized	Value of Capacity
(CFS)	Utilized (\$)
457	\$165,485
644	\$233,095
602	\$217,999
992	\$359,209
775	\$280,574
844	\$305,859
1047	\$379,072
995	\$360,256
235	\$85,057
6589	\$2,386,604
7300	\$2,644,000
711	\$257,396
	Capacity Utilized(CFS)45764460299299277584410479952356589711

Elsinore Valley Municipal Water District

Inefficient and Excessive Water Usage

Note:

Data displayed begins with July to end of August (2 months)

B. = Number of Bills

Inefficient and Excessive Water Usage

Domestic % Volume of Water Block 3 -4					Landscape Irrigation % Volume of Water Block 2 -3				
Director Division	Inefficient	Inefficient%	Excessive	Excessive%	Director Division	Inefficient	Inefficient%	Excessive	Excessive%
Director Division	FY 2023 AF	FY 2023	FY 2023 AF	FY 2023		FY 2023 AF	FY 2023	FY 2023 AF	FY 2023
1 - D. Burke	30.2	28.4%	38.59	28.0%	1 - D. Burke	10.85	18.0%	9.36	15.0%
2 - H. Ryan	12.76	12.0%	24.46	17.7%	2 - H. Ryan	22.2	36.8%	30.87	49.5%
3 - C. Edmondson	16.18	15.2%	17.75	12.9%	3 - C. Edmondson	6.29	10.4%	7.34	11.8%
4 - P. Williams	20.57	19.4%	24.01	17.4%	4 - P. Williams	5.69	9.4%	2.98	4.8%
5 - A. Morris	26.57	25.0%	33.1	24.0%	5 - A. Morris	15.22	25.3%	11.85	19.0%
Total (%)	106.28	100.0%	137.91	100.0%	Total (%)	60.25	100.0%	62.4	100.0%

Summary of Total Accounts in Autopay

Total Accounts							
Division	Director	Total	AutoPay	%			
1	Darcy Burke	11,252	4,900	44%			
2	Harvey Ryan	9,320	3,354	36%			
3	Chance Edmondson	8,115	2,854	35%			
4	Phil Williams	8,136	3,041	37%			
5	Andy Morris	8,442	3,542	42%			

QUESTIONS?

11

WATER PLANNING COMMITTEE

DISCUSSION OUTLINE

Date: October 17, 2022

Originator: Parag Kalaria- Water Resources

Subject: KEY WATER QUALITY PARAMETERS

STRATEGIC GOAL

Protect Public Health and Environmental Resources

BACKGROUND AND RECOMMENDATION

Staff will provide an update on EVMWD's Key Water Quality Parameters during the meeting.

ENVIRONMENTAL WORK STATUS

Not applicable.

FISCAL IMPACT

None.

Attachments:

Key Water Quality Parameters Report

Key WQ Parameters At A Glance

Arsenic (12 Month Rolling Average)

Group	Sample Source	Range (ppb)
SB	Cereal 3 Well	34 - 54
SB	Cereal 4 Well	12 - 46
SB	BBGWTP - Finished	0-3
SB	Summerly Well	0 - 2.6
SB	Cereal 1 Well	8.5 - 19
SB	Corydon Well	6.3 - 14
SB	Malaga Blend	0 - 6.4
MB	Joy St.Well	5.40 - 11
MB	Machado Well	2.4 - 5.2
MB	Machado Blend	5.6 - 9
DE	Terracotta Well	0-3.7

PFOA

Perfluorooctanoic acid (PFOA) - Blended Supplies

Group	Sources	Range (ppt)
NB	Temescal Valley Connection	2-2
NB	Flagler 2A	8.6-17
NB	Flagler 3A	11-16
NB	FWTF Treated	9.8-14
NB	TVP-Flagler Blend	2.5-3.6
NB	Mayhew	0.09-2.6
NB	Station 71	2-7.8
NB	Temescal Blend	0.16-7.5
NB	Coldwater Pump & PRV Station	2.5-7.4
NB	Flagler-TVP Blend (to Elsinore)	0.09-3.8
SB	Cereal 3 Well	0.1-2
SB	Cereal 4 Well	0.09-2
SB	BBGWTP - Finished	0.09-0.38
SB	Summerly Well	8.3-11
SB	Cereal 1 Well	0.33-2.3
SB	Corydon Well	0.09-2
SB	Malaga Blend	0.1-3.8
MB	Joy St.Well	0.15-2.4
MB	Machado Well	2-2
DE	Terracotta Well	0.16-0.18

Group	Sources	Range (ppt)
NB	Temescal Valley Connection	2-2.2
NB	Flagler 2A	3.6-7.6
NB	Flagler 3A	8.2-10
NB	FWTF Treated	5.4-7
NB	TVP-Flagler Blend	0.06-2.5
NB	Mayhew	0.06-2
NB	Station 71	0.06-2.6
NB	Temescal Blend	0.06-2.8
NB	Coldwater Pump & PRV Station	0.05-2.3
NB	Flagler-TVP Blend (to Elsinore)	0.05-2.6
SB	Cereal 3 Well	0.06-2
SB	Cereal 4 Well	0.06-2
SB	BBGWTP - Finished	0.05-0.69
SB	Malaga Blend	0.06-6.3
SB	Summerly Well	14-18
SB	Cereal 1 Well	0.59-2.8
SB	Corydon Well	0.05-2
MB	Joy St.Well	0.17-1.3
MB	Machado Well	2-2
DE	Terracotta Well	0.17-0.2

PFHxS: Proposed Notification and Response Levels

- February 2020: DDW initiated the NL development process
- March 2022: OEHHA released NL recommendations
- August 2022: DDW presented proposed NL and RL to the State Water Board
- SWRCB's revised PFAS Monitoring Orders expected by October

Group	Sources	Range (ppt)
NB	Temescal Valley Connection	2-2
NB	Flagler 2A	3.1-6.9
NB	Flagler 3A	4.8-6.9
NB	FWTF Treated	3.5-4.3
NB	TVP-Flagler Blend	0.13-2
NB	Mayhew	0.12-3
NB	Station 71	2.2-4.3
NB	Temescal Blend	0.51-4.9
NB	Coldwater Pump & PRV Station	0.12-2.9
NB	Flagler-TVP Blend (to Elsinore)	0.12-2.4
SB	Cereal 3 Well	0.13-2
SB	Cereal 4 Well	0.12-3.7
SB	BBGWTP - Finished	0.12-0.53
SB	Malaga Blend	0.13-6.1
SB	Summerly Well	14-25
SB	Cereal 1 Well	2.2-8
SB	Corydon Well	0.48-4.3
MB	Joy St.Well	1.7-2.4
MB	Machado Well	2-2
DE	Terracotta Well	0.58-2.1

Nitrate

Group	Sampling Point Name	Last	Range (ppm)
NB	Flagler 2A	6.1	5.6-7.7
NB	Flagler 3A	2.3	2.3-4.7
NB	Mayhew	2.5	1.5-2.6
NB	Station 71	2.4	2.1-2.6

500 -	RL = 500 ppb	Va	anadium (tot	al)	
450		BBGWTP - Finished	·NL ug/L		Malaga Blend
450 -					
400 -					
350 -					
300 -					
250 -					
d 200 -					
150 -					
100 -					
50 -	NL = 50 ppb				
0					
Marz	ADY-21 May-21	which which we is sept or	white peril is	ury tepyy Waryy bo	Wangy Inug myg bregg

Group	Sample Source	Range (ppb)
SB	Cereal 3 Well	79 - 400
SB	Cereal 4 Well	88 - 280
SB	BBGWTP - Raw Influent	150 - 380
SB	BBGWTP - Finished	4.2 - 32
SB	Malaga Blend	19 - 83
SB	Summerly Well	25 - 26
SB	Cereal 1 Well	18 - 140
SB	Corydon Well	0 - 180

TDS (Northern Blending)

Range (ppm)
942-1100
856-952
334-434
422-502
240-342

TDS (Distribution System Range)

Recycled Water - TDS

QUESTIONS?

PFOA/PFOS - EPA Draft Regulations Under CERCLA

Water Planning Committee October 17, 2022

What is the new EPA Rule

RULE

- PFOA and PFOS (and their salts and isomers) Designated as Hazardous Substances under CERCLA (Superfund) Section 102(a)
- Action taken under EPA Administrator Regan's PFAS Strategic Roadmap
- When finalized, PFOA/PFOS exceeding reportable quantities (RQ) would need to report to National Response Center
- The RQ is <u>1 pound or more in 24-hour period</u>

PUBLISHED Date (Draft Rule)

• Sept 6, 2022; 60 days comments period ends Nov 7, 2022 (40 CFR 302)

REASON

- To protect public health because evidence exists that these chemicals present danger to public health,
- Improve transparency and accountability of locations and quantities released,
- Encourage better waste management & treatment
- Help to hold polluters accountable for cleaning up contamination

EPA – US Environmental Protection Agency; PFOA - perfluorooctanoic acid;

PFOS - perfluorooctanesulfonic acid, CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act; PFAS - per- and polyfluoroalkyl substances; CFR – Code of Federal Register RQ- Reportable Quantity

Entities Affected by the Rule

- PFOA/PFOS Manufacturers
- PFOA/PFOS Processors
- Manufacturers of Products Containing PFOA/PFOS
- Downstream Product Manufacturers & Users of PFOA/PFOS
- Waste Management & Wastewater Treatment Facilities

A designation alone does not require the EPA to take response actions, does not require any response action by a private party, and does not determine liability for hazardous substance release response costs.

Direct Impacts of Hazardous Designation

Three direct impacts -

- 1.Trigger reporting obligations when PFOA or PFOS released above the reportable quantity
- 2.Obligations on the U.S. Government for transferring certain properties
- 3.Obligation on DOT to list and regulate CERCLA designated hazardous substances as hazardous materials

PFAS Relative Concentrations

PFOA/PFOS Quantities in District Wastewater Facilities

Treatment Plant	Influent Concen (PPT)	Influent Concentration (PPT)		t tration	Biosolids Concentration (PPT)		Biosolids Concentration (PPT)		Influent Loads (lbs/day)	Effluent Loads (lbs/day)	Biosolids Loads (lbs/day)
	PFOA	PFOS	PFOA	PFOS	PFOA	PFOS	PFOA+PFOS	PFOA+PFOS	PFOA+PFOS		
RWRF	14-17	7.5-19	15-20	1.3-8.5	7,600 - 18,000	8,500 - 10,000	0.0019	0.0015	0.0006		
RRCWRF	14-25	8-14	19-28	1.3-15	NA	NA	0.0002	0.0002	NA		

Note: Loads based on <u>highest</u> concentrations of sampling events of 2020-2021. Plant flow/biosolids based on max day.

Impact of Rule on the District

- The largest facility (Regional Plant) discharges appear to be more than 2 orders of magnitude below the Reportable Quantity
 - -RQ = 1 lb/24hr
 - -EVMWD = 0.0006 lb/24hr
- Minimal fiscal impacts
 - Testing
 - Reporting
 - Disposal (trucking) costs

CASA Response to the EPA Rule (Draft Letter under Review) Key points in the CASA Draft Response Letter to EPA

- The Proposed Rule Without Clear Exclusions for Certain Public Utilities could Subject Local Water/Wastewater Agencies and their Ratepayers to Unwarranted Financial Liability.
- Clarifying Exemptions for Water, Wastewater and Biosolids are Essential
- It is important to consider the true cost of the proposed designation regardless whether CERCLA section 102(a) does not require such an analysis.

CASA – California Association of Sanitation Agencies

Joint Water Supply Study

Board Member Workshop #2

October 18, 2022

Agenda

- 1. Welcome and Introductions
- 2. Meeting Objectives

3. Overview of Concept Evaluation

- Evaluation process
- Concept scoring results

4. Discussion on Concepts to Advance

- Review concepts to advance
- Get feedback and confirm concepts

5. Discussion on Pathway Forward/Next Steps

13 Concepts Were Evaluated

A: Ocean Desalination New Camp Pendleton	D: Brackish Desalination w/ Stormwater Capture	H: Imported Water New Water Rights, External Surface Storage	K: Imported Water Wet Year Water, Local Groundwater Storage	
B: Ocean Desalination Planned Doheny	E: Recycled Water Direct or Indirect Potable	I: Imported Water Wet Year Water, New Local Surface Storage	L: Imported Water Wet Year Water, External Groundwater Storage	
C: Ocean Desalination Rosarito, Mexico	F: Recycled Water In-Lieu	J: Imported Water Wet Year Water, Existing Local Surface Storage	M: Imported Water Farm Efficiency, Local Storage	
	G: Stormwater Capture & Recharge			> Woodard & Curran

Other #i.

Concept Evaluation Process

Characterize			
Supply Potential	Score Higher	Recommend	
Independence 8 Energy Efficiency 9 Acceptance	Medium Lower	Advance	
Cost Efficiency \$ Funding Potential			

Concept Scoring Results

	Α	В	С	D	Е	F	G	Н	I	J	к	L	М
	Ocean Desal - New Camp Pendleton	Ocean Desal - Planned Doheny	Ocean Desal - Rosarito Mexico	Brackish Desal w/ Stormwater	Recycled Water - IPR/DPR	Recycled Water- In-lieu	Stormwater Capture and Recharge	Imported Water - New Water Rights with External Surface Storage	Imported Water - Wet Year Water; New Local Surface Storage	Imported Water - Wet Year Water; Existing Local Surface Storage	Imported Water - Wet Year Water; Local Groundwater Storage	Imported Water - Wet Year Water; External Groundwater Storage	Imported Water - Farm Efficiency; Local Storage
Supply Potential								unknown	unknown	unknown	unknown	unknown	unknown
Supply Reliability													
Independence													
Energy Efficiency													
Acceptance													
Cost Efficiency													
Funding Potential													

3 Concepts are Recommended for Further Refinement

Ocean Desalination

New Camp Pendleton Stormwater Capture & Recharge

Imported Water Wet Year Water, Local Groundwater Storage

Ocean Desalination – New Camp Pendleton

- Ocean desal is the largest source of new water available.
- This is the best ocean desal concept for a regional partnership to enhance supply reliability, supply potential and independence.

A new ocean desalination plant (~50mgd) located on or near Marine Corps Base Camp Pendleton (Oceanside, CA) as well as a 30- mile pipeline (and associated facilities) to convey year-round, new supply to the Joint Agency's combined service area. Timing: Long-term	Supply Potential Given that this is a new ocean desalination facility the supply potential is essentially limitless. For the purposes of this study, it is assumed that the concept will produce 50,000 AFY which is comparable to similar projects.				
Supply Reliability A A A Ocean desalination provides a new, year- round supply that is not impacted by seasonal, annual nor long-term hydrologic and availability fluctuations.	Independence S S S By constructing, owning and operating all facilities, the Joint Agencies will have maximum control over supplies. Since water can be provided directly as-needed, no storage is needed to preserve supply for drought.				
Energy Efficiency	Acceptance Given the recent Coastal Commission denial of a final permit for a desalination plant in Huntington Beach, the current climate for desalination plant is not favorable. However, given the recently released Water Supply Strategy by Governor Newsom, there could be incentives for coastal desalination projects in the future.				
Cost Efficiency\$\$Costs are comparable to other large-scale projects that would bring next tier new water to the area, but higher than further development of local supplies.Cost Range: \$2,500-3,000/AF	Funding Potential				

Stormwater Capture & Recharge

- Stormwater provides a low cost, energy efficient, locally controlled supply.
- This concept builds upon an existing project idea and would receive strong funding and regulatory support.

Concept would be to construct a rubber dam to capture excess wet weather flows on Santa Ana River to capture and divert additional flows downstream of existing diversions. Flows would be used for groundwater recharge and storage in Riverside North basin or SBBA. Timing: Short-term	Supply Potential Potential supplies of up to 15,000 AFY and may vary based on water rights and further supply availability analysis.			
Supply Reliability	Independence			
Reliability is dependent on wet weather flows in the region. Supply reliability could also be impacted by water rights determinations.	Facilities would be owned and operated within the region. However, the project would also rely on the US Army Corps of Engineers and other external agencies for operations and supply availability.			
Energy Efficiency	Acceptance 🛛 🖉 🖉			
Locally captured and stored water is among the most energy-efficient supply options available. Conveyance and treatment would be minimal as it is a local high-quality supply. Production of supply would be similar to existing groundwater energy use.	Stormwater capture and recharge projects are promoted at the State level and generally viewed by public as an obvious supply to be tapped. Water rights could become an issue in the future but should be able to be resolved.			
Cost Efficiency \$\$\$	Funding Potential			
Unit costs for locally captured stormwater and storage in groundwater basins are at the lowest end of the supply study concepts.	Multiple funding opportunities currently exist for a variety of stormwater capture and groundwater recharge/storage projects.			
Cost Range: ~\$1,000/AF				
	0 (1)#			

Imported Water – Wet Year Water with Local Groundwater Storage

- All imported water concepts rely upon an unknown future supply potential.
- This concept prioritizes leveraging local groundwater basins as the best form of storage before considering other storage options.

Purchase wet year imported water supply from MWD and establish an agreement among Joint Agencies to store water in a local groundwater basin, either through expansion of SARCCUP program and/or leverage existing local groundwater storage (e.g. Elsinore or Temecula Valley Basin) Timing: Short-term to mid-term	Supply Potential Supply potential is variable and would depend on 1) frequency and volume of available wet year imported water supplies, 2) capacity for storage in local groundwater basins, and 3) capacity of groundwater extraction wells.		
Supply Reliability Supply source is the purchase of extra wet year imported water, which would be stored in existing local groundwater basins and for use in a dry year. While local storage is a plus, the frequency of wet years that provide extra water to the SWP and CRA systems has decreased over the past 10 years.	Independence & & & & & & & & & & & & & & & & & & &		
Energy Efficiency	Acceptance Maximizing existing local groundwater storage is a common and a generally supported option for water management. The SARCCUP program has already received general support and a high level of acceptance.		
Cost Efficiency\$\$\$Unit costs are assumed to include the purchase of wet year imported water at standard purchase price, as well as groundwater extraction costs.**Cost Range: \$1,200-\$2,000***	Funding Potential		

Recommended Next Steps

- 1. Jointly fund the development/determination of refinement steps (w/ budget) for each of the concepts selected to advance
- 2. Prioritize the selected concepts based on refinement steps, cost, level of effort, and potential return on investment
- 3. Execute partnership agreement(s) to implement refinement steps for prioritized concept(s)
- 4. Proceed with refinement steps

